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1 Introduction

This program is designed to calculate, and if desired, to fit to experimental data for bound — continuum
transition intensities associated with any of:

Photodissociation, from a single initial level, a specified set of initial levels, or a thermal vibrational-
rotational level population of some initial electronic state, into one or more final electronic states.

Spontaneous Emission, from a single initial level, a specified set of initial levels, or a thermal vibrational-
rotational level population of some initial electronic state, into one or more final electronic states.

Predissociation from one or more levels of a specified initial electronic state into one or more final
electronic states.

Fits performed using this program may be used to determine the repulsive portion of the final electronic
state potential energy curve(s) and the associated transition moment or coupling function(s), and can
simultaneously treat data for multiple isotopomers, as well as combinations of different types of observables
(e.g., total and/or partial photodissociation cross sections, and/or branching ratios).

In the following, Section II describes more explicitly what calculations BCONT can perform, how the
basic equation are solved, how the program functions, and outlines some of its options. Section III then
states the input/output conventions, indicates the units assumed for the physical parameters of interest,
and describes how to run the program on a UNIX system. The program’s operation is controlled by the
contents of a data file which is read on channel-5 during execution. The structure of this data file and
the significance of the various read-in parameters are described in Section IV. Section V then describes
the most significant differences between the current and earlier[1] versions of this program. Finally, the
Appendix describes the structure of the program and the roles of its various subroutines, presents listings
of illustrative sample data input files and of the resulting output, and indicates the CPU time those sample
cases required.

The current version of the (extensively commented) source code for BCONT may be obtained by filling
in a form accessed throught the “Computer Programs” link web page hitp://leroy.uwaterloo.ca. While,
there are no charges associated with distribution or use of this program, its use should be acknowledged
in publications through reference to this report[2]. Users are also requested not to distribute the program
themselves, but to refer other prospective users to the above web site or to the author. The version
described herein includes corrections and enhancements incorporated up to March XX, 2001. Individuals
currently utilizing older versions of this code [1] will likely find it desirable to obtain the current version.
I would also appreciate having users inform me (e-mail: leroy@uwaterloo.ca) of any apparent errors or
instabilities in the code, or of additional features which might appear desirable for future versions.

2 Properties Calculated by, and Capabilities of BCONT

The three types of properties which may be calculated using BCONT are schematically illustrated in Fig. 1,
and described in the next three subsections.

2.1 Photodisociation or Continuum Absorption

The first of these properties is the photodissociation of a molecule in a discrete level with vibrational and
rotational quantum numbers v and J, energy E, ; and unit normalized radial wavefunction ¢, j(r), due
to absorption of light of frequency v, which drives a transition into a continuum level of final electronic
state—s at energy E = E, j + hv with radial wavefunction ¢y, ;, (r). The photodissociation cross section

for this process, in units [A2/molecule], is given by [3, 4, 5]:
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Here, 7 = v/c is the transition energy in cm™!, KS(E) = [E — Vi(r = o0)] is the asymptotic relative

kinetic energy of the molecular fragments dissociating along the potential energy curve Vy(r) of electronic
state-s, in cm™!, S:]]/ is the usual Honl-London rotational intensity factor [6], the reduced mass p is in
u, and the transition moment function M,(r) has units debye and incorporates the appropriate ratio of
initial- to final-state electronic degeneracy factors. Note too that the second line of this expression assumes
unit asymptotic normalization of the continuum radial wavefunction ¥ g () (see subsection I1.X).

To facilitate comparisons with experiment, the quantity actually calculated by the program (and units
assumed for data being fitted to) is the decadic molar extinction coefficient, in units [¢/mole - cm]:

es(v,J;v) = Napos(v,J;v) x 10719/1n(10) (2)
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where N4 is Avogadro’s number.

While Eq.(2) gives the absorption coefficient for transitions from the single initial-state level (v, J), the
observable of interest is often the total absorption from a population of molecules in thermal equilibrium
at some temperature 1. This total thermal absorption coefficient may be written as

es(Thv) ZZFUJ )es(v, ;1) (3)

where F, ;(T) = (2J + 1) e Fes/k8T /Q(T) is the fraction of the initial-state population in vibration-
rotation level (v,.J), and Q(T) =, 3, (2J 4+ 1) e Fvs/kBT is the molecular partition function for levels
of the initial electronic state.

Of course, Egs. (2) and (3) are for partial absorption coefficients into a particular final electronic state,
s. In many cases the natural observables would be the total absorption coefficients

€tot (v, V) = ZGS(U,J;V) (4)

S
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or a sum over some particular subset of these partial absorption coefficients, such as a sum over all final
states with a common potential energy asymptote.
In any case, with an appropriate choice of input control parameter, BCONT will readily calculate any
of these single-initial-state or thermal-population, partial or total cross sections.

2.2 Spontaneous Continuum Emission from (a) Discrete Level(s)

The second property considered herein is the Einstein coefficient for spontaneous emission of light of fre-
quency v from vibration-rotation level (v, J) with energy E, ; of the initial electronic state, into continuum
levels with energy E = FE, ; — hv of final electronic state—s. The rate coefficient for this process, in units
[s7!/em~!] is given by:
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This expression has essentially the same form as Eqgs. (1) and (2), and the various variables have the same
meaning. Once again, the summation over all spectroscopically allowed J — J’ transitions cannot be
experimentally broken down. However, the partial rates for emission into different final electronic states
may or may not be experimentally separable. In the latter case, the observable would simply involve a
sum over all participating final electronic states:

Aot (v, J;v) ZA (v, J;v) (7)

Similarly, while the above expressions are for emission from a single (v, .J) level, if the emission arises
from a thermally equilibrated initial-state population, the total emission rate at a given frequency would
be given by

Aot (T v) Z Z Fy(T) Atot (v, J;v) (8)

where F, ;(T') is the fraction of the initial-state population in level (v, J), as defined above. Again, for an
appropriate choice of input parameters BCONT will calculate any of these single or thermal initial-state,
partial or total emission rates.

2.3 Predissociation

The third type of property which can be calculated or fitted to using BCONT is isoenergetic predissociation
from one or more discrete levels of a bound initial-state potential energy curve into the continuum of one
or more final electronic states whose potential asymptotes lie below the energies of the (v, J) levels in
question. The “Golden rule” expression for such predissociation rates is, in units s~

ko, ) = (47 /R) (00 (1) M (1) 00, (1) (9)
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While most variables appearing herein have the same significance as in Egs. (1)-(6), the function M;(r)
does not. For the case of predissociation this is a operator with units of energy (in the present case, cm™!)
describing the coupling between the initial and final electronic states. The precise nature of this operator
depends on the nature of the two electronic states [5]: in some cases it is a simple function of r, in some
cases a function of r multiplied by J or J(J 4+ 1), and in some cases it involves a differential operator. The
first and third of these possibilities are allowed for in the present version of BCONT; details are presented
in Section IT1.XX.

The uncertainty principle tells us that the predissociation rate for a given level is reflected in a
Lorentzian broadening with a full width at half maximum of

FFWHM = Zk‘s(U,J)/Qﬂc (10)

where c¢ is the speed of light. If the observable is the level width itself, that width depends on the
sum over contributions from rates into all accessible final-state channels, as shown in Eq. (10). In some
cases, however, analysis of the velocity or angular distribution of the dissociation products may also allow
partial widths into individual final states or subsets of final states to be determined. BCONT can perform
calculations for any of these possibilities.

Note too that in predissociation processes the molecular rotational angular momentum must be con-
served, so J' = J and there is no sum over J’ in the resulting rate expression.



2.4 Application of BCONT

BCONT may be used in one of two modes. The first is simply to perform “forward” calculations of
a property or set of properties using a given initial-state potential and one or more sets of final-state
potentials and transition moment or coupling functions. The second mode is to perform a least-squares
fit to experimental values of one or more properties for one or more isotopomers in order to optimize
parameters defining the analytic expressions for the repulsive final-state potentials and transition moment
functions. Such fits are of course non-linear, and hence require realistic initial trial values of the requisite
potential and transition moment (or coupling) function parameters. In either mode, the property or
properties considered may depend on one or several different final electronic states. However, as currently
configured, the program will only consider one initial electronic state at a time, though it does allow
for the possibility of the associated initial-state potential being slightly different for different molecular
isotopomers. Similarly, in the present version of BCONT the fitting mode will only optimize parameters
describing the final electronic state(s); the initial-state potential is assumed to be fixed. This is also not a
fundamental linitation, and may be relaxed in a later release.

In the least-squares fitting mode, it is particularly important to realize the a variety of properties may
be used in a single fit; e.g. partial and total absorption coefficients for multiple isotopomers, as well
as pranching ratios for dissociation into different final-state channels. An evocative illustration of this
capability is seen in a recent analysis of UV photodissociation data for HI and DI in which four different
final-state potential curves and transition moment functions were determined from fits to two sets of thermal
total absorption coefficients and five different sets of experimental branching ratio measurements [7].

3 Computational Methodologies
3.1 Solving the Radial Schrodinger Equation

The core of the program is concerned with solving the radial or (effective) one-dimensional Schrodinger
equation to determine the discrete eigenvalues and eigenfunctions of the specified initial-state potential,
and to calculate the radial eigenfunctions in continuum above the asymptote(s) of the final electronic
state(s). In wither case thus involves solving the differential equation

&PV, (R)
2u  dR?

where  is the effective or reduced mass of the system, J the rotational quantum number, and the effective
one-dimensional potential V;(R) is a sum of the rotationless (electronic) potential plus a centrifugal term.
For the normal problem of a diatomic molecule rotating in three dimensions, this centrifugal potential has
the form [J(J+1)—Q2]h?/2uR? , where Q =IOMEG is the projection of the electronic angular momentum
onto the internuclear axis. However, for the special case of a diatom rotating in two dimensions, a case
invoked by setting the read-in parameter IOMEG > 99 (see the discussion of data input statements 716
and 24 in SectionIV), this term becomes [J? —1/4] h%/2uR?. The program also defines the reduced mass
appearing in Eq. (11) as Watson’s “charge-modified reduced mass”,[8] puw = (M4 Mp)/(Ma+Mp—m. Q) ,
where M4 and Mp are the atomic masses of the two atoms, m, is the electron mass, and Q = CHARGE
(see input data statement #1) the + integer net charge on the molecule (ion).

The core of the calculation is the solution of Eq. (11) to determine the eigenvalues E, ; and eigen-
functions W, j(R) of the potential V;(R). This is done in subroutine SCHRQ, which is based on the
famous Cooley-Cashion-Zare routines SCHR,[9, 10, 11, 12, 13] but incorporates special features such as
the ability to automatically locate and calculate the widths of “quasibound” or tunneling-predissociation
levels.[14, 15, 16] These are metastable states which lie above the dissociation limit, but whose dissociation
is inhibited by a potential energy barrier.

The accuracy of the eigenfunctions and eigenvalues obtained is largely determined by the size of the
(fixed) radial mesh RH (read on line #4 of the data file) used in the numerical integration of Eq. (11).
For potentials that are not too steep or too sharply curved, adequate accuracy is usually obtained using

+ VJ(R) \I’v,J(R) = EU,J \I’v,J(R) (11)



an RH value which yields a minimum of 15 to 30 mesh points between adjacent wavefunction nodes in
the classically allowed region. An appropriate mesh size may be estimated using the particle-in-a-box
expression

RH = / (NPN x [(1/16.85762908) x max{E — V/(R)}]'/?) (12)
where NPN is the selected minimum number of mesh points per wavefunction node (say 20), max{E —
V(R)} is the maximum of the local kinetic energy (in cm~!) for the levels under consideration (in general
it is ~ the potential well depth), and the numerical factor is identified below in Section III. A value of
NPN which is too small yields results which are unreliable, while too large a value may require excessive
computational effort or cause array dimensions to be exceeded. Thus, while Eq. (12) is a useful guide, a
careful user should always empirically vary RH to determine the largest value which yields results of the
accuracy desired for their particular application.

In general, the outward and inward numerical integration must start at distances RMIN and RMAX
(data file line #4), respectively, which lie sufficiently far into the classically-forbidden regions (where
Vi(R) > E, ;) that the wavefunction has decayed by several orders of magnitude relative to its amplitude
in the classically-allowed region. The present version of the code prints warning messages if this decay is
not by a factor of at least 107°; if that does occur a smaller RMIN or larger RMAX value might be needed
to give the desired accuracy for such cases. On the other hand, if RMIN or RMAX lie sufficiently far into
the classically-forbidden regions that [V;(R) — E] becomes extremely large, the integration algorithm can
become numerically unstable for the given mesh size. For realistic diatomic molecule potential curves, this
situation is only likely to occur near RMIN. If it does, a warning message is printed and the beginning
of the integration range is automatically shifted outward until the problem disappears. However, use of
a slightly larger value of RMIN will cause these warning messages to disappear and (marginally) reduce
the computational effort. For most diatomic molecules, a reasonable value of RMIN is ca. 0.7 — 0.8 times
the smallest inner turning point encountered in the calculation, but for hydrides or other species of low
reduced mass, even smaller values may be necessary.

The program internally defines the upper bound on the range of numerical integration RMAX as the
smaller of the value read in (data file line #4) and the largest distance consistent with the specified mesh
and the internally-defined (see Section IV) potential and distance array dimension NDIMR. As with RMIN,
the choice of RMAX is not critical as long as (for truly bound states) the wave function has decayed to an
amplitude much smaller than that in the classically allowed region, and the same amplitude decay test of
1072 is used for it. However, due to the anharmonicity of typical molecular potential curves, the requisite
values of RMAX are much larger for highly excited vibrational levels than for those lying near the potential
minimum. In order to reduce computational effort, an integration range upper bound Rey4(v, J) is therefore
determined for each level using the semiclassical result of Eq. (??) which shows that the wavefunction dies
off exponentially in the classically forbidden region with an exponent of

g [fena(v:]) 1/2
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Ra(v,J)

where the turning point Ry(v, J) marks the outer end of the classically accessible region at this energy E,, ;.
For each level it considers, SCHRQ first locates Ra(v,J), and then determines a value of Renq(v,J) which
is sufficiently large to ensure that this starting amplitude is smaller than that in the classically-allowed
region by a factor of at least 107?. While apparently somewhat fussy, in calculations for levels spanning a
wide range of energies use of this procedure can reduce the overall computation time by a factor of two.

3.2 Locating Quasibound Levels and Determining Their Widths
4 Defining the Initial-State Potential V(R)

The potential-generation package which reads necessary input and returns the potential array and asso-
ciated parameters is controlled by subroutine PREPOT (for “PREpare POTential”). It uses subroutine
package GENINT for interpolation/extrapolation over a set of read-in turning points, and subroutine POT-
GEN for generating a potential as an analytic function. Values of the necessary input parameters enter



via read statements #5-15; for the 2-state case invoked by inputting NUMPOT =2, this block of input
statements is used twice.

One may choose to define a potential either by a set of NTP turning points { XI(7), YI(i) } read in data
statement 78, or (if NTP < 0) by an analytic function. In the former case, interpolation over the read-in
turning points to produce the array with mesh size RH required for the numerical integration of Eq. (11)
is performed in a manner specified by the read-in parameter NUSE. For NUSE > 0 this involves the use
of piecewise NUSE—-point polynomials (typically NUSE = 8 or 10), while for NUSE < 0 the interpolation
uses a cubic spline function. If the range of numerical integration [RMAX, RMIN] extends beyond that
of the input turning points appropriate extrapolation procedures are invoked. In particular, at distances
smaller than the second of the read-in turning points XI(2), the potential is extrapolated inward with
an exponential function fitted to the first three turning points. Similarly, if RMAX > XI(NTP —1) the
potential for R > XI(NTP —1) is extrapolated outward as either an exponential-type function or a (sum of)
inverse-power terms, as specified by parameters ILR, NCN and CNN of read statement 76 (see Section V).

If the user wishes to define the initial-state potential by an analytic function, rather than by an array
of points, the integer input parameter NTP of read statement #5 should be set < 0. The program then
skips read statements #6-8 and proceeds instead to #9-15 (see Section V), where it reads values of the
parameters defining the chosen analytic potential. The present version of the code allows for the following
five families of potential functions.

(i) The familiar Lennard-Jones(m,n) potential:
V(R) = De[n(Re/R)™ —m(Rc/R)"] [(m —n) (14)
(ii) The “Modified Lennard-Jones” (MLJ) function which combines a flexible form for the potential well
with the correct inverse-power long-range behaviour:[17]
V(R) = D.[1 - (Re/R)" *O)°] (15)
where ((z) is a power series in the variable z = (R — R.)/(R + R.) .
(iii) The “Extended Morse Oscillator” (EMO) function:[18]
V(R) = D, [1 - R (16)

where (3(z) is again a power series in the variable z = (R — R.)/(R+ R.) . Truncating this series at
the constant term yields the familiar simple Morse potential. Another Morse-type function allowed
by POTGEN is Hua’s 4-parameter potential[19]

2
V(R) = D ([1 - e PR/ — ¢ et ) (17)
(iv) Seto’s modification[18] of Surkus’ GPEF potential[20] which incorporates the familiar Dunham,[21]

Simons-Parr-Finlan,[22] and Ogilvie-Tipping[23] expansions as special cases invoked by different
definitions of the expansion variable z (see discussion of read #9 in Section V):

V(R) = cy2? <1+ > em zm> (18)
m=1

(v) The generalized HFD function defined in terms of the reduced distance variable x = R/R, :[24, 25]
V(R) = AaPe =5 4 D(2)Y" Cp/R™ (19)

where D(z) is a damping function which cuts off the inverse-power terms at short distances.

Alternatively, a user may introduce their own functional form by simply replacing subroutine POTGEN

with their own potential routine. To retain consistency with the rest of the present code such user-prepared
POTGEN subroutine should be:



CALL POTGEN(LNPT, N, VLIM, R, RM2, V, NCN)

The first argument parameter LNPT is an integer which specifies whether parameters defining a new
potential are to be read in and printed (LNPT > 0), or whether additional potential points are to be
calculated from the potential defined on a preceding call to this routine (LNPT < 0). In LEVEL’s
potential-generating routine PREPOT (which calls POTGEN) LNPT is fixed = 1.* The other input
quantities are the integer N specifying the size of the radial mesh point array, the absolute energy VLIM
at the potential asymptote, the N-point array of distances R(i) (in A) at which potential values are to
be generated, and the squared inverse distance array RM2(i) = 1/R(i)2. It returns the desired N-point
potential array V(i) (in units cm™!), as well as the integer NCN which is the (positive) power of the
asymptotically-dominant inverse-power term in that potential energy function. Under the option in which
the program automatically searches for many or all vibrational levels of a given potential (when NLEV1
is large and negative, see read #16), NCN is used in a near-dissociation theory[26, 27, 28] algorithm to
estimate the number and energies of missing levels. If the chosen analytic potential has a barrier maximum

or dies off exponentially rather than as an inverse power, NCN should be set at some large integer value
(e.g., NCN=99).

5 Defining the Final-State Potential(s)
6 Defining the Transition Monent or Coupling Function(s)

* While not used here, LNPT is retained in the calling sequences of GENINT and POTGEN to facilitate the use
of these subroutines in other programs.



7 Units, Physical Constants, Array Dimensions, Input/Output
Conventions, and Program Execution

Unless otherwise specified, the units of length and energy used throughout this program, and assumed
for all input data, are A and cm™?, respectively. The main exception is that the transition dipole func-
tion M(R) of Egs. (??) used for calculating the Einstein coefficients of Eq. (6), defined in terms of the
expansion parameters DM(i) of read statement 719 (see SectionIV), is assumed to be in debye (where
lau= 2.54174776 debye = 8.4783579 x 1073°C-m). Note, however, that in the IRFN > 2 option for
generating the radial function defining the matrix element argument (see read #18) by numerical interpo-
lation over a set of read-in points, the channel-6 output describing the read-in transition moment function
values being interpolated over may (incorrectly) refer to their units as cm™' rather than debye, since the
interpolation is done by the same subroutine package set up to deal with an input pointwise potential. In
addition, while a set of read-in turning points used to define the potential may be in any convenient units,
appropriate conversion factors must be read (see read #7) which may convert them to A and cm™1.

The values of the physical constants appear in the program in two places. The first is the factor
2u/h? = 11/16.85762908 [em ' A?] (where p is in amu) appearing in the radial Schrédinger equation of
Eq. (11). The second is in the collections of terms defining the numerical factor in Eq. (6) used in calculating
the Einstein coefficient for the rate of spontaneous emission. These constants are based on the 1998
compilation of Ref.[29], while the atomic isotope masses tabulated in subroutine MASSES were taken from
the compilation of Ref.[30].

The array dimension limits which a user may wish to change are set in PARAMETER statements in the
main driver routine and in subroutines GENINT and SPLINT (of the PREPOT package). In the former,
NDIMR (currently 20001) is the maximum dimension of the radial mesh array on which the potential,
wave functions and radial expectation value/matrix element arguments are defined. For systems of small
reduced mass it could be safely set considerably smaller than this. The second parameter set in the main
program is VIBMX (currently 400), which defines the maximum number of vibration/rotation levels for
which vibrational eigenvalues may be read and stored, and the upper bound on the number of rotational
sublevels which may be stored when applying the NJM > 0 option to automatically generate many J
sublevels for a given v (see read #16). The two array size parameters set inside the PREPOT package are
NTPMX (currently 600) which is the maximum number of potential (or radial function, for IRFN > 1)
turning points which may be read in, and MAXSP (in SPLINT) which is the number of spline coefficients
required when interpolating over the read-in function values, and should be set equal to 4x NTPMX.

The program reads input data on channel-5, writes standard output to channel-6, and optionally
(controlled by parameters LPPOT, LCDC and LXPCT of read statements #5 & 16) writes a condensed
output file to one or more of channels 7-10. Those executing the program in a UNIX operating system
environment may wish to create and store in the system or user’s ‘bin’ directory a shell named (say) ‘rbc’,
such as that shown here:

# UNIX shell ’rbc’ to execute the compiled version of program BCONT named

# Dbc.x, which is stored in the user’s directory /upath/ with input data

# file $1.5 and output to $1.6, $1.7, etc. all in the current directory.
#

time ~/upath/lev.x < $1.5 > $1.6

mv fort.7 $1.7 >& /dev/null

mv fort.8 $1.8 >& /dev/null

mv fort.9 $1.9 >& /dev/null

mv fort.10 $1.10 >& /dev/null

which allows the program to be executed with the simple command: rlev (filename)

where (filename).5 is the input data file the user has created ((filename) may be any name, usually chosen
to identify a particular case). In this case the standard output from channel-6 will be written to file
(filename).6, and the channel-7, channel-8, channel-9, and channel-10 output will be written to files
(filename).7, ... , (filename).10, respectively.



8 Data File Structure and Input Parameter Definitions

All of the READ statements for inputting data to the program, and the associated logical structure, are
listed here. The following subsection then provides a detailed description of the nature and/or options
associated with each of the input variables.

#1 READ(5,*) TITLE
#2 READ(5,%) AN1, AN2, CHARGE, NISTP, NFS, NSETS, FITIT
DO iso= 1, NISTP
#3 READ(5,*) MN1(iso), MN2(iso)
#4a IF((AN1.LE.O) .0OR. (AN1.GT.109)) READ(5,*) NAME1(iso), MASS1(iso)
#4b IF((AN2.LE.0) .0OR. (AN2.GT.109)) READ(5,*) NAME2(iso), MASS2(iso)
ENDDO
#5 READ(5,*) RH, RMIN, RMAX, OVRCRT
#6 READ(5,%*) IWRSCH, IWROVR
#7 IF(FITIT.GT.0) READ(5,*) IROUND, LPDER, UCUTOFF, DFACT, LPRINT

c Loop over the NSETS different types of observables to be considered
DO iset= 1, NSETS
#8 READ(5,*) INFO(iset)
#9 READ(5,*) ISOT(iset), BOLTZ(iset), DTYPE(iset), IFRPW(iset), PQR(iset)
IF(NFS.GT.1) THEN
IF(DTYPE(iset) .EQ.1) THEN

#10 READ(5,*) (CN(iset,ifs), ifs= 1,NFS)
ELSEIF(DTYPE(iset) .EQ.2) THEN
#11 READ(5,*) (CN(iset,ifs), ifs= 1,NFS)
#12 READ(5,*) (CD(iset,ifs), ifs= 1,NFS)
ENDIF
ENDIF
€ ... for calculating or fitting to predissociation rates or level widths ....
IF(IFRPW(iset) .EQ.0) THEN
#13 READ(5,%*) NVJ(iset)

IF(FITIT.LE.O) THEN
IF(NVJ(iset) .GT.0) THEN

#14 READ(5,*) (VFIX(ivj), JFIX(ivj), ivj= 1, NVJ(iset))
ELSE
#15 READ(5,*) V1ST(iset), VMAX(iset), J1ST(iset), JMAX(iset)
ENDIF
ELSEIF(FITIT.GT.0) THEN

#16 READ(5,*) PUNITS(iset)

DO ivj= 1, NVJ(iset)
#17 READ(5,*) VFIX(ivj), JFIX(ivj), OBS(ivj,iset), UNC(ifr,iset)

ENDDO
ENDIF
ENDIF
¢ ... for calculating or fitting to intensities or branching ratios ...
IF(IFRPW(iset) .NE.O) THEN
#18 IF(BOLTZ(iset) .GT.0) READ(5,*) TEMP(iset), VMAX(iset), NJ(iset)
#19 IF(BOLTZ(iset) .LE.O) READ(5,*) V1ST(iset), J1ST(iset)
#20 IF(FITIT.LE.O) READ(5,*) NFREQ(iset), FREQ1, DFREQ
IF(FITIT.GT.0) THEN

#21 READ(5,*) NFREQ(iset), FREQYN

DO ifr= 1, NFREQ(iset)
#22 READ(5,*) FREQ(ifr,iset), OBS(ifr,iset), UNC(ifr,iset)

ENDDO
ENDIF



c ...

C

C

#23
#24

ENDDO

If fitting to multiple data sets ... allow for scaling

IF((FITIT.GT.O0) .AND. (NSETS.GT.1)) THEN

READ(5,*) (SF(iset), iset=2, NSETS)
READ(5,*) (SCALE(iset), iset=2, NSETS)
ENDDO

Read initial-state potential energy function specifications

#25

#26
#27
#28

#29
#30

#31
#32
#33
#34
#35

READ(5,*) NTPI, LPPOTI, OMEGA(O), VLIMI
IF(NTP.GT.0) THEN

READ(5,*) NUSEI, IR2I, ILRI, NCNI, CNNI
READ(5,*) RFACTI, EFACTI, VSHIFTI
READ(5,*) (XI(I), YI(I),I= 1,NTPI)

ELSE

READ(5,*) IPOTL, MPAR, NPAR, NVARB, IBOB, DSCM, REQ
IF (NVARB.GT.0) READ(5,%) (PARM(I), I=1,NVARB)
IF(IBOB.GT.0) THEN
READ(5,%) RMN1, RMN2, NC1, NC2, NG1, NG2, RX
IF(NC1.GE.0) READ(5,%) (CA1(I), I=0,NC1)
IF(NC2.GE.0) READ(5,%) (CA2(I), I=0,NC2)
IF(NG1.GE.O0) READ(5,*) (GA1(I), I=0,NG1)
IF(NG2.GE.0) READ(5,*) (GA2(I), I=0,NG2)
ENDIF

ENDIF

Read final-state potential energy function specifications

#36

#37
#38
#39

#40
#41
#42
#43

#44
#45
#46

#47
#48
#49
#50

READ(5,*) REXFS, REXTMF, LPFS, LPTMF

DO

ifs= 1, NFS
READ(5,%*) FSTYPE(ifs), OMEGA(ifs), NFSPRM(ifs), VLIMF(ifs), XCOORD(ifs)
READ(5,*) (FSPRM(j,ifs), j=1, NFSPRM(ifs))
IF(FITIT.GT.0) READ(5,*) (FSVAR(j,ifs), j= 1, NFSPRM(ifs))
IF(FSTYPE(ifs) .EQ.2) THEN
READ(5,*) NTPFS(ifs)
READ(5,*) NUSEF, IR2F, ILRF, NCNF, CNNF
READ(5,*) RFACTF, VFACTF, VSHIFTF(ifs)
READ(5,*) (RTPF(i), VIPF(i), i=1, NTPFS(ifs))
ENDIF
READ(5,*) GFS(ifs), TMFTYP(ifs), OTMF(ifs)
READ(5,%*) (TMFPRM(m,ifs), m=0, OTMF(ifs))
IF(FITIT.GT.0) READ(5,%*) (TMFVAR(m,ifs), m=0, OTMF(ifs))
IF (TMFTYP(ifs) .EQ.0) THEN
READ(5,*) NPTMF, TMFLIM
READ(5,*) NUSETMF, ILRTMF, NCNTMF, CNNTMF
READ(5,*) RFACTMF, MFACTMF
READ(5,*) (Xi(i), Yi(i), i=1, NPTMF)
ENDIF
ENDDO
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Definitions and Descriptions of Input File Data
A. Identify the Physical Species and General Control Parameters

Read a text title or description for the calculation.
#1. READ(5,*) TITLE

TITLE: a line of text of up to 75 characters describing the particular problem, enclosed in single
quotes: e.g., 'Title of Problem’

Read integers identifying the molecule or system.
#9. READ(5,*) AN1, AN2, CHARGE, NISTP, NFS, NSETS, FITIT
AN1 & ANZ2: (integer) atomic numbers of the atoms/particles #1 & 2 forming the molecule.

CHARGE: + integer for the total charge on the molecule. Used to generate Watson’s charge-
modified reduce mass for molecular ions:[8] u = My Mp/(Ma+ Mp—m.x CHARGE) , where
me is the electron mass.

NISTP: (integer) number of distinct isotopomers to be considered in the simulation; > 1 when
simultaneously fitting to separate data sets for different isotopomers of a given species.

NFS: the (integer) number of different final electronic state potentials contributing to the property
calculation(s)

NSETS: the (integer) number of distinct sets of properties to be calculated (in a pure “forward”
calculation), or the number of distinct sets of experimental data to be simultaneously treated
in a fit [e.g., thermal absorption coefficient at different temperatures and/or for different iso-
topomers, and/or photodissociation branching ratios, and/or ... etc.].

FITIT: (integer) specifying whether to perform forward calculation(s) from a set of known poten-
tials (FITIT < 0), or to fit to set(s) of input data to optimize final-state potential function
and/or transition moment or coupling function parameters.

Loop over the NISTP isotopomers, reading the mass numbers MN1 and MN2 of the two atoms.
#3. READ(5,*) MN1(isot), MN2(isot)

MN1 & MNZ2: integer mass numbers of the atoms/particles #1 & 2 forming the isot*” molecular
isotopomer. For a normal stable atomic isotope, its mass is taken from the tabulation in
subroutine MASSES:; if outside the range for the normal stable isotopes of that atom, the
abundance-averaged atomic mass will be returned.

In the special case when AN1 and/or AN2 is either <0 or > 109, read in a two-character alphanumeric
name for that particle and its mass (in amu). This alows the treatment of non-molecular model systems
or of exotic species such as muonium or positronium “molecules”.

#4.a IF((AN1.LE.O).OR.(AN1.GT.109)) READ(5,#*) NAME1(isot), MASS1(isot)

#4.b IF((AN2.LE.0).OR.(AN2.GT.109)) READ(5,*) NAME2(isot), MASS2(isot)

NAME1 or NAME2: a two-character alphanumeric name for the particle whose mass is being
read, enclosed in single quotes, as in ‘mu’.

MASS1 or MASS2: the masses (in amu) of the particle in question.

Read real numbers defining the range and mesh of the numerical integration (all in A), and a numerical
convergence criterion.

#5 READ(5,*) RH, RMIN, RMAX, OVRCRT
RH : the numerical integration mesh size; see discussion associated with Eq. (12) in Section IL.A.

RMIN & RMAX : the inner and outer limits, respectively, of the range of numerical integration
(see discussion of Section II). As zero'" order estimates one may set RMIN ~ 0.6x (potential
inner wall position) and RMAX very large (say,=99A). Internally RMAX is reset to the
smaller of this read-in value and the largest distance allowed by RMIN, RH and the array
dimension NDIMR (see Section III).
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OVRCRT: relative amplitude convergence criterion for quantal continuum wavefunctions (typi-
cally ca. 1 x 1079).

Read parameters to control internal print level - used for troubleshooting.
#6. READ(5,*) IWRSCH, IWROVR

IWRSCH : Integer to control print level in calculations of discrete initial state levels and wavefunc-
tions. If < 0 print only errors/warnings [recommended normal setting]; if = 0 no printing; if
> 1 also print final eigenvalues & node count; if > 2 also end-of-range wavefunction ampli-
tudes; if > 3 also intermediate trial energies during eigenvalue convergence.

IWROVR:: Integer to control print level in continuum wavefunction/overlap integral calculation.
If <0 print only errors/warnings [recommended normal setting]; if = 0 no printing; if > 1
also print overlap integrals; if geq2 also print final converged amplitudes; if geq3 also show
all converging amplitudes.

If performing a fit to experimental data, read parameters governing features of the fit and associated
printout.

#7. IF(FITIT.GT.0) READ(5,*) IROUND, LPDER, UCUTOFF, DFACT, LPRINT

TROUND: Setting (integer) IROUND # 0 causes the “sequential rounding and refitting” proce-
dure of Ref.[31] to be implemented, with each parameter being rounded at the IROUND|’th
significant digit of its uncertainty. If IROUND > 0 the sequential rounding is applied in turn
to the remaining free parameter with the largest relative uncertainty; if TROUND < 0 the
rounding to proceeds sequentially from the last parameter to the first. If IROUND = 0 the
fit simply stops after full convergence, with no parameter rounding; this last option saves con-
siderable computation time, and should normally be chosen except for a “final” fit to obtain
parameters for publication.

LPDER: an integer set > 0 to cause the partial derivative array generated in each fitting cycle to
be printed to channel-10. Normally (except when trouble-shooting) set LPDER = 0.

UCUTOFF : areal number allowing one to selectively omit some of the input data from the analysis
without creating a new data file; read-in data with experimental uncertainties ; UCUTOFF
are ignored in the least-squares fit.

DFACT : a real scaling factor used in calculating derivatives-by-differences in least-squares par-
tial derivative subroutine DYIDPJ. Its use is under development. Normally users should set
DFACT =1.0.

LPRINT : an integer specifying the level of printing inside the core least-squares subroutine package
NLLSSRR. Setting it =0 yields no internal printout except for convergence failure warning
messages; this is the recommended ‘normal’ choice when there are no problems with the fits.
If LPRINT < 0 print converged unrounded parameters; if LPRINT > 1 also print converged
rounded parameters (when IROUND # 0); if LPRINT > 2 also print parameter changes on
each rounding step; if LPRINT > 3 also report parameter convergence criterion satisfied; if
LPRINT > 4 also print convergence test on each fitting cycle; if LPRINT > 5 also print
parameter changes & uncertainties on each fitting cycle.

B. Specify the Properties to be Calculated or Fitted To

Now, loop over the NSETS cases specifying the different (sets of) properties to be calculated, or different
sets of data to be included in the fit. For each case, use read #8 and 9, plus whichever combination of
reads #10-22 are appropriate or necessary for that case, plus #23 and 24.

#8. READ(5,*) INFO(iset)

INFO: a one-line name or description for this case, consisting of up to 70 characters, enclosed in
single quotes: e.g., 'name for data set’

#9. READ(5,*) ISOT(iset), BOLTZ(iset), DTYPE(iset), IFRPW(iset), PQR(iset)
ISOT: integer (1 <ISOT < NISTP ) identifying the isotopomer for this data set or property.
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BOLTZ: integer > 0 if property calculation requires a Boltzman weighted sum over initial-state
{v, j} levels; BOLTZ < 0 if property is for a single initial-state {v, J} level (e.g., predissociation,
or absorption or emission from a single {v, J} level).

DTYPE: integer = 1 if the property concerns a transition into one or more final states (absorption
or emission intensities, or predissociation rates); = 2 if this property is a ratio of intensities
to different states (a branching ratio).

IFRPW : An integer to further specify the property being calculated — it is the integer power of
the frequency to be used in the property calculation: IFRPW = 0 for predissociation, = 1
for absorption coefficients, and = 3 for spontaneous emission. For model calculations, set
IFRPW = —1 to calculate absorption coefficients assuming a constant frequency factor, and
= —3 to calculate emission intensities assuming a constant frequency factor.

PQR: integer =1 to cause P, Q & R branch intensities to be calculated, weighted by Hénl-London
factors, and summed over; PQR = 0 invokes the “Q-branch” approximation of fixing J' = J” .

If the property for case—iset is an intensity or sum of intensities into more than one (NFS>1) final
electronic state (DTYPE=1), input weights in read #10 and skip reads #11 & 12; if it is a ratio of
intensities (DTYPE=2), skip 710 and read weights defining the branching ratio in #11 & 12. NOTE that
if NFS=1 these three READ’s are redundant, and hence are skipped.

#10. READ(5,%) (CN(iset,ifs), ifs= 1,NFS)

CN : the integer weights for the final-state intensities added to give values of this property:
Iiot = CN(1)xI; + CN(2) x I3 + ... + CN(NFS) x INps , where I; is the transition intensity into
final-state—i. For a single final state (NFS= 1), read CN(1) = 1.

If this property is a ratio of intensities (DTYPE=2), read (integer) coefficients specifying the combination
of calculated final-state intensities.
#11. READ(5,*) (CN(iset,ifs), ifs= 1,NFS)
#12. READ(5,%) (CD(iset,ifs), ifs= 1,NFS)
CN & DN : The integer numerator and denominator weights specifying the particular intensity

branching ratio: I, = ggggiﬁigg%ﬁgiiggggggﬁzi: , where I; is the transition intensity

into final-state—i.

If the property is predissociation from levels of the initial state, use READs #13 — 17.
#13. READ(5,%) NVJ(iset)
NVJ: is the number of initial-state {v, J} levels for which predissociation rates are to be calculated.
For a “forward” calculation (FITIT < 0), NVJ < 0 causes calculations to be performed for all
possible {v, J} within specified ranges (see read #15).
For a foward calculation (not fitting), use either read #14 or 15 to specify the levels whose predissociation

rates are to be calculated, and skip reads #16 & 17; for a fit, skip reads #14 & 15 and use reads #16 &
17 to input the data to be fitted.

If NVJ(iset) > 0 read NVJ pairs of quantum numbers {v, J} specifying the levels for which predissociation
rates are to be calculated.

#14. IF(NVJ(iset).GT.0) READ(5,%) (VFIX(ivj), JFIX(ivj), ivj= 1,NVJ(iset))

Alternately, if NVJ(iset) < 0 read in lower and upper bounds on v and J and calculate predissociation
rates for all {v, J} such that VI1ST(iset) < v < VMAX(iset) and J1ST(iset) < J < IMAX(iset).

#15. IF(NVJ(iset).LE.O) READ(5,*) V1ST(iset), VMAX(iset), J1ST(iset), JMAX(iset)

For a fit to predissociation data, skip reads #14 & 15 and read, first the units of the input data, and then
the experimental data and their uncertainties, one case per line of input.

#16. READ(5,*) PUNITS(iset)

PUNITS: When fitting, it specifies the units for the input experimental predissociation rates:
PUNITS > 0 for widths (FWHM) in cm™!, =0 for lifetimes in seconds, and < 0 for rates

in s~ L.
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#17. READ(5,*) (VFIX(ivj), JFIX(ivj), 0BS(ivj,iset), UNC(ivj,iset), ivj= 1,NVJ(iset))
VFIX & JFIX: are the v and J quantum numbers of the predissociating level.

OBS & UNC: are the observed predissociation rates or widths (in units specified by PUNITS)
and their uncertainties (in the same units).

If the property is absorption or emission intensities, or branching ratios, allow for two cases.
(i) For absorption or emission from a thermal initial-state population (BOLTZ > 0) ...
#18. IF(BOLTZ(iset).GT.0) READ(5,*) TEMP(iset), VMAX(iset), NJ(iset)

TEMP is the Kelvin temperature characterizing the thermal initial-state population.

VMAX : an upper bound v value cutoff for the thermal sum over initial-state vibrational levels.

NJ : specifies how the sum over a thermal rotational population is to be done. For NJ = 0 perform
all calculations with J(initial)=0; for NJ < 0 perform a direct sum from J=0 to a maximum
of J = |NJ|, subject to a cutoff when 99.9% of the population for that v is accounted for; for
NJ > 0 sum over contributions from NJ average J values in NJ equally weighted segments of
the rotational population for each v, as per Ref.[3].

(ii) For absorption or emission from a particular (v, J) level, (BOLTZ < 0), ...
#19. IF(BOLTZ(iset).LE.O) READ(5,*) V1ST(iset), J1ST(iset)

V1ST & J1ST are the v and J quantum numbers of the level whose absorption or emission coef-
ficients are to be calculated (or fitted to).

For a forward (non-fitting) calculation, specify the frequencies at which intensities (or branching ratios)
are to be calculated.

#90. IF(FITIT.LE.O) READ(5,*) NFREQ(iset), FREQ1, DFREQ
NFREQ is the number of transition energies for the simulation.

FREQ1 & DFREQ: Perform calculations at the NFREQ transition energies (in cm™!)
v(i) = FREQI + (i — 1) x DFREQ.

For a fit (FITIT > 0), read in the experimental intensities or branching ratios, and their incertainties.

#21. READ(5,*) NFREQ(iset), FREQYN
NFREQ is the number of experimental data in this set.
FREQYN is an integer: if > 0 it specifies that the ordinate values of the input data are transition
energies in cm ™!, while FREQYN < 0 indicates that those read-in values are wavelengths in
nm (program uses cm~! internally).

Now loop over the NFREQ frequencies, for ifr=1 — NFREQ(iset), reading one entry per line.
#99. READ(5,*) (FREQ(ifr,iset), OBS(ifr,iset), UNC(ifr,iset), ifr= 1, NFREQ(iset))
FREQ is the transition energy in cm~! (if FREQYN > 0) or wavelength in nm (if FREQYN < 0)
for this datum.

OBS is the experimental transition intensity of branching ratio, in units [¢/mole - cm| for absorption,
and s~! for emission.
UNC is the uncertainty in the experimental value, in the same units.
End of loop over the NSETS properties to be predicted or input data sets to be fitted to!
When performing fits to multiple data sets, one may wish/need to apply a global scaling to experimental
data or predictions for certain data subsets to allow for (say) uncertainties in concentration measurements
for different isotopomers. Read these statements if FITIT >0 and NSETS,; 1; otherwise ignore them.
#23. READ(5,%) (SF(iset), iset= 2, NSETS)
#24. READ(5,%) (SCALE(iset), iset= 2, NSETS)
SF : a multiplicative scaling factor applied to the experimental data for data set iset to make it
consistent with that for data set—1.

SCALE: an integer flag to specify whether scaling factor SF(iset) is to be held fixed (when
SCALE =0) or varied (when SCALE >0) in the fit.
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C. Specify the Initial-State Potential

Some combination of the next 11 read statements defines the initial (bound-state) potential energy function.
A particular case always starts with read 725, but then uses either reads #26-28 for numerical interpolation
over a set of input turning points, or (some of) reads 7#29-35 for the case of an analytic potential function.
This segment of the input is identical to the potential specification section for program LEVEL [32].

#95. READ(5,%) NTPI, LPPOTI, OMEGA(0), VLIMI

NTPI: An integer which is set < 0 to generate an analytic potential using POTGEN; in this case,
skip over reads #2628 and go directly to read #29. If NTP > 0, it is the number of turning
point pairs to be input via read #28.

LPPOTI: controls printing of the potential array (normal setting =0 yields no printing). If
LPPOTI >0 write to standard output (channel-6) the potential and its first 2 derivatives-by-
differences at every LPPOTI! mesh point; it is sometimes useful to do this when troubleshoot-
ing. Setting LPPOTI <0 writes the resulting potential in condensed format to channel-8 at
every |[LPPOTI** mesh point; this may be useful if (for example) one wants to input this
potential into a plotting routine.

OMEGA(0) : The (integer) total electronic angulat momentum projection quantum number (A or
Q) for the initial electronic state (required for detailed rotational intensity weighting).

VLIMI: The absolute energy (in ecm™!) of the initial-state potential asymptote. This sets the
absolute energy scale used in the calculation.

For a pointwise potential (if NTPI>0), need to specify how the interpolation is to be done, and since
RMAX often lies well outside the range of the input turning points, must also specify how the potential is
to be extrapolated at large R. Skip over this down to read #29 if NTPI< 0.

#26. READ(5,%) NUSEI, IR2I, ILRI, NCNI, CNNI

NUSEI: Specifies how the interpolation is to be done. If NUSEI >0 use NUSEI-point piecewise
polynomials; if NUSEI <0 perform cubic spline interpolation. For highly precise and smooth
input points, such as those generated from an RKR calculation, NUSEI =8, 10 or 12 is usually
most appropriate; for less precise or less dense points, such as those from ab initio calculations,
low-order piecewise polynomials (NUSEI=4 or 6) or splines (NUSEI <0) are usually best.

IR2I: For very steep repulsive potential walls, better interpolation is often attained by actually in-
terpolating over R? x V(R); setting IR2I >0 causes this to be done (normally recommended).
The option of turning this off (setting IR2I < 0) and interpolating over V' (R) itself may be used
to obtain an estimate of the effect of “interpolation noise” on the final results.

ILRI: Specifies how to extrapolation from the last input turning points to RMAX. For a long
extrapolation one of ILRI= —1, 0 or 1 is usually most appropriate; however, if the input
points extend to fairly near dissociation one should set ILRI>2 and specify the theoretically
appropriate value of NCNI (>1), and if it is available, also input an estimate of CNNI (see
below).

For %LRI <0, fit the last 3 points to: VLIMI—A x exp[—b(R — R,)?]
For ILRI=0, fit the last 3 points to: VLIMI—A x RP x exp[—bR)] .
For ILRI=1, fit the last 2 points to: VLIMI—-A/RB .

For ILRI=2 or 3, respectively, fit the last 2 or 3 points to a sum of 2 or 3 inverse-power
terms, with powers differing by 2: VLIMI — SIRL Ogony o, /RNONF2m

For ILRI>4, fit last few points to a sum of ILRI inverse-power terms, with powers differing
by 1+ V(R) = VLIMI — 3507 Cnontgn/ RNV

NCNI: For inverse-power potential extrapolation with ILRI > 2, NCNI ( > 0) specifies the limiting
inverse-power behaviour: V(R) oc VLIMI — CNNI/RNNL Otherwise (for ILRI<1) it is a
dummy input variable.

CNNI: For inverse-power potential extrapolation with ILRI>2, setting CNNI#0 causes the
leading inverse-power coefficient to be fixed at the read-in value CNNI= Cycni[em™! ANCNI]
rather than be determined from a fit the outermost turning points.
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The input turning points may come from ab initio or other sources and may need to be converted to the
units (cm ™! and A) used inside the program.
#97. READ(5,*) RFACTI, EFACTI, VSHIFTI

RFACTI & EFACTI: are the factors required to convert units of the NTPI input turning point
distances XI(7) and energies YI(i) to A and cm™!, respectively. If no conversion is required,
read in factors of 1.DO0.

VSHIFTI: An energy shift (in cm~!) added to the input potential points to make them consistent
with VLIMI. This addresses the fact that input ab initio or RKR turning points may be
expressed relative to an energy zero inconsistent with the user-defined VLIMI value.

Read in the actual turning points.
#28. READ(5,%) (XI(I), YI(I), I= 1,NTP)
XI(i) & YI(i): are the (distance, energy) input turning points defining the potential curve.

If the input potential is defined by an analytic function (the NTPI <0 case) using the POTGEN subroutine
supplied, the parameters characterizing it are input via some or all of read statements #29-35. For a user’s

POTGEN function the input parameters (if any) are up to them, but the calling sequence must match
that expected by PREPOT (see discussion of Section IL.E).

#99. READ(5,%) IPOTL, MPAR, NPAR, NVARB, IBOB, DSCM, REQ
IPOTL: Integer specifying the type of analytic function used for the potential.

IPOTL =1 generates a Lennard-Jones(MPAR, NPAR) function.

IPOTL =2 generates an MLJ potential:[17, 33] V(R) = D[l — (R./R)NPAR ¢#(2)2]2 where
z=(R—R.)/(R+ R.) and [3(z) is a power series in z.
For MPAR > 0 polynomial 3(z) has order NVARB —1 and NVARB coefficients PARM(i).
For MPAR < 0 this polynomial has order NVARB —4 and is constrained to yield a lim-
iting long-range inverse-power potential coefficient of Cnony = PARM(NVARB-2) by the
switching function fs(R) = 1/[e®sE=1s) 1 1] where ag = PARM(NVARB — 1) and
Rs = PARM(NVARB) (see Ref.[17]).

IPOTL =3 normally generates either a simple Morse (when NVARB=1) or an “Extended
Morse Oscillator” (EMO) potential[18, 34, 35] (when NVARB>1): V(R) = D[l —
P (B=Re))2 where z = (R — R.)/(R + R.) and fB(z) is a power series in z of order
NVARB —1 with the NVARB coefficients PARM(i).
e If MPAR= —1, generate Wei Hua’s[19] 4-parameter Morse-like potential V(R) =

D, ([1 - e (BRI} — ce—b<R—Re>])2 where b =PARM(1) and C =PARM(2).
o If MPAR= —2, generate the Coxon-Hajigeorgiou[36] “Generalized Morse Oscillator”
with exponent parameter 3 a power series expansion in (R — R,).

IPOTL =4 uses Seto’s modification[18] of Surkus’ GPEF potential[20] V(R) = cq22[1 +
S 1 Em 2™ where z = (RNPAR _ R NPAR) /(4o RNPAR 1 by RNPAR) with ¢ read in
as ¢g =DSCM, the ¢; (i > 1) as the first NVARB —2 input parameters PARM(i), ag =
PARM(NVARB —1) and bs = PARM(NVARB). Note that Surkus’ case of NPAR < 0 is
accommodated by Seto’s identity[18] z(—NPAR, ag, bs) = z2(NPAR, —bg, —ag).

e Dunham expansions are generated by setting NPAR=1, ag=0 & bg=1.
e SPF expansions are generated by setting NPAR=1, ag=1 & bg=0.
e Ogilvie-Tipping expansions are generated by setting NPAR=1, ag =bg =0.5.

IPOTL =5 generates generalized HFD(NPAR, 6, 8, 10, 12, 14) type potentials:

V(R) = AgPARMG) ¢=fa-PARM@ 2* 4 D(3)[ Cypar/RNPAR + Cg /RO + C5/R® + ...

where x = R/R., A and (3 are defined (internally) to yield the input values of D, = DSCM
and R. =REQ, the inverse-power coefficients Cxpar, Cs, Cg, ... etc. are input as
dimensionless parameters (C, = C,/D. R.") PARM(i) for i = 6, 7,... etc., and the
damping function is defined as D(x) = exp{—PARM(1) [PARM(2)/z — 1]PARMG)Y  for
z < PARM(2) and D(z) =1 for x > PARM(2). Note: (i) if no low-power (NPAR < 6)
inverse-power term is required, simply set PARM(6) = 0.0, and (ii) necessarily NVARB >
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7; NVARB= 7 causes the potential to have 1/RN®N and 1/R® terms; to include the
additional inverse powers (8, 10, 12, up to 14), simply increase NVARB and read additional
dimensionless constants PARM(i) = Cy(;_4) = Co(;—1)/De (R)2=4)

MPAR & NPAR: Integers used to characterize particular potential forms (see above).

NVARB: The (integer) number of (real) parameters PARM(i) to be read in to define a particular
potential.

IBOB: An integer to specify whether (for IBOB> 0) or not (for IBOB< 0) atomic-mass-
dependent Born-Oppenheimer breakdown correction terms are to be included in the potential
and/or centrifugal 1/R? functions.

DSCM : Normally (except for the IPOTL = 4 case, above), the potential well depth D, in cm™!.
REQ : The equilibrium distance R, in A.

#30. IF(NVARB.GT.0) READ(5,*) (PARM(I),I=1,NVARB)
PARM(i) : The NVARB (real*8) parameters read in to define the selected analytic potential.

If atomic-mass-dependent Born-Oppenheimer breakdown (B-O-B) corrections are to be incorporated into
the potential and/or centrifugal 1/R? functions (IBOB > 0), use read statement #31 and one or more (as
needed) of #32-35. In the POTGEN subroutine supplied these are additive corrections expressed as power
series in z = (R— R.)/(R+ R.) , starting with the constant term, with the isotope dependence convention
defined as in Ref.[37]. If B-O-B corrections are not considered (IBOB < 0), omit reads #31-35.

#31. READ(5,%) RMN1, RMN2, NC1, NC2, NGi, NG2, RX

RMN1 & RMN2: The integer mass numbers of the reference isotopes of atoms 1 & 2, respectively,
defining the B-O-B correction functions (see Ref.[37]).

NC1 & NC2: For atoms i =1 & 2, the numbers of terms in the ‘adiabatic’ potential correction
functions: [(M&—M])/M&] SNC i 2™ where M is the mass of the actual atomic isotope

considered (IMNi from read #1) and M/ the mass of the reference isotope (mass number RMN7)
in terms of which the correction is defined.[35, 37] Set them < 0 to omit such corrections.

NG1 & NG2: For atoms i =1 & 2, the number of terms in the ‘non-adiabatic’ correction functions
¢ = [M] /M) YNNG i m incorporated into the centrifugal potential (h2/2u) J(J41) [1+

¢ (2) + ¢5(2)]/R? , with M® and M defined as above.[35, 37] Set them < 0 to omit such
corrections.

RX: A real variable which may be set # 0 to invoke a legacy form[36] of the centrifugal correction
function expressed using terms of the form [(R — R;)™ — (Re — R;)™]. For the normal case
(above),[35, 37] read in RX=R, =0.

#32. IF(NC1.GT.0) READ(5,x) (CA1(I),I=1,NC1)
#33. IF(NC2.GT.0) READ(5,x) (CA2(I),I=1,NC2)
#34. IF(NG1.GT.0) READ(5,*) (GA1(I),I=1,NG1)
#35. IF(NG2.GT.0) READ(5,*) (GA2(I),I=1,NG2)

CA1(i) & CA2(i): The (real*8) expansion parameters defining the ‘adiabatic’ potential correction

functions described above: CA1(m) = ul, and CA2(m)= u2, , in units cm~!.

CA1(i) & CA2(i): The (real*8) expansion parameters defining the centrifugal potential correction
functions described above: GA1l(m) = ¢}, and GA2(m) = ¢2, (dimensionless).

For a calculation involving only a single isotopomer (NISTP = 1 in read #1), simply continue on read #35.
However, if NISTP > 1, repeat read statements #24-34 for each isotopomer. This is needed because for
some small— species, isotopomer-dependent initial-state potentials are known, and hence should be used.
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D. Characterize the Final-State Potentials and Transition Moment Functions

#36. READ(5,%) REXFS, REXTMF, LPFS, LPTMF
REXFS: reference distance about which final-state potentials are expanded (see Section X.X).

REXTMS : reference distance about which transition moment functions are expanded (see Section
X.X).

LPFS: Controls (optional) printing of the final-state potentials. For LPFS > 0 print every LPSF*"
point of each potential array to channel-9; otherwise no printout.

LPTMEF : Controls (optional) printing of the transition moment function arrays. For LPTMF > 0
print every LPTMF*" point of each array to channel-9; otherwise no printout.

Now loop over the NFS final electronic states, using reads #36 — —49 to input the parameters specifying
the potential and transition moment function for each, and identifying which parameters (if any) are to be
freed in a fit.

D. (i) Begin by specifying the basic potential type for each case.

#37. READ(5,*) FSTYPE(ifs), OMEGA(ifs), NFSPRM(ifs), VLIMF(ifs), XCOORD(ifs)
FSTYPE specifies the type of final-state potential.

e FSTYPE =1 for a repulsive exponential
Vi(r) = VLIMF + A exp {—(R — REXFS)(As + A3z + A4 z* +...)} , where the {4;} are
read in as parameters FSPRM(7,ifs) .

e FSTYPE = 3 for an “Extended Morse Oscillator” )

Vi(r) = VLIMF + Ay [exp{—(R — A2)(A3+ A4z + A52° +...)} — 1] — Ay , where the
{A;} are read in as parameters FSPRM(i,ifs).

e FSTYPE = 2 for a potential defined by a read-in set of turning points with a repulsive
exponential attached to the two innermost points. The attached exponential wall has the
form
Vi(r) = X1 + Xo exp {—(R — REXFS)[A4; + Ay z + A3 2% + ...]} , where X; and X, are
determined by the fit to the two innermost turning points, and the {A4;} are read-in as
parameters FSPRM(i,ifs) .

OMEGA : the integer total electronic angular momentum progection quantum number for final
state ifs. Required when calculating Honl-London factors needed for P/Q/R intensity calcula-
tion for the option PQR(iset) =1 (see read #8).

NFSPRM: is the number of parameters {FSPRM(4,ifs)} to be read in for a given final-state po-
tential. Current dimensioning allows NFSPRM < 6.

VLIMF is the absolute energy (in cm™!) at the asymptote of this potential.

XCOORD specifies the nature of the exponent expansion coordinate in the above potential forms.
e XCOORD=p(p=1-9) defines z = (R? — REXFSP)/(RP + REXFS?);
e XCOORD = 10 defines z = (R—REXFS)/R ¢ XCOORD = 11 defines z = (R—REXFS)/REXFS

#38. READ(5,%) (FSPRM(j,ifs), j= 1,NFSPRM(ifs))
FSPRM(j,ifs) : are the NFSPRM parameters A, Ag, ... etc., characterizing this potential.

If performing a fit to experimental data (FITIT >0 in read #1), now specify which potential parameters
are free in the fit.

#39. IF(FITIT.GT.O0) READ(5,%) (FSVAR(j,ifs), j= 1, NFSPRM(ifs))

FSVAR: an integer for each of the NF'SPRM potential parameters input on the preceeding line.
FSVAR(j,ifs) = 1 if parameter—j of state—ifs is to vary in the fit; otherwise set it = 0.
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For a final-state potential defined partly by read-in turning points (FSTYPE =2), read in the number of
turning points NTPFS(isf) and parameters specifying how the interpolation over them and extrapolation
beyond them is to be performed. The definitions of these parameters are precisely the same as those for
the case of a pointwise initial-state potential (see reads #25 — 28), and are not repeated here.

#40. READ(5,*) NTPFS(ifs)

#41. READ(5,%) NUSEF, IR2F, ILRF, NCNF, CNNF

#42. READ(5,*) RFACTF, VFACTF, VSHIFTF(ifs)

#43. READ(5,%) (RTPF(i), VIPF(i), i=1, NTPFS(ifs))

D. (ii) Now specify the nature of the transition moment function for this case.

#44. READ(5,*) GFS(ifs), TMFTYP(ifs), OTMF(ifs)
GFS: is a positive integer giving the electronic degeneracy of the transition into this final state[38].
TMFTYPE: an integer specifying the nature of the transition moment or coupling function in
the bound—continuum overlap integrals. For TMFTYP >0 it is a power series expansion in a

radial coordinate ztmf(R) defined as follows:

e For TMFTYP =0 the expansion coordinate is defined by interpolating over a read-in array
of points. This allows use of an ab initio transition moment function, in which case one
would normally set OTMF = 1 and the two associated expansion parameters (see read #42)
as TMFPRM(m,ifs) =0.0 and 1.0 for m =0 and 1. itself.

For TMFTYP = p=1 —9 the coordinate is (R? — REXTMF?)/(RP + REXTMEF?).

For TMFTYP =10 the coordinate is (R — REXTMF)/R.

For TMFTYP =11 the coordinate is (R — REXTMF)/REXTMF .

For TMFTYP =12 the coordinate is 1/R?.

For TMFTYP =13 the expansion coordinate is the distance coordinate R

For TMFTYP <0 the coupling operator is a sum of |[TMFTYP| terms involving radial

partial derivatives, each with the form: —(h?/2pu) {dVZER) +2W(R) %} , where W (R) is

the Lorentzian function W(R) = a/[4a®* + (R — R.)?]. If TMFTYP = —1 input (and
fit to, if desired) the two parameters a and R.. If TMFTYP = —2 input (and fit to, if
desired) two sets of Lorentzian parameters: aj, R 1, az and R.2. This case was introduced
to allow treatment of non-adiabatic predissociation between two adiabatic potentials with
an avoided crossing at R. [39)].

OTMF is an integer specifying the order of the power series in the variable ztmf. For TMFTYP < 0
it is a dummy variable.

#45. READ(5,%) (TMFPRM(m,ifs), m= O, OTMF(ifs))
TMFPRM : the (real value) coefficients of the power series expansion for the transition moment or
coupling function. For TMFTYP <0 they are the 2 (or 4) Lorentzian parameters mentioned
above.

If performing a fit to experimental data (FITIT >0 in read #1), must now specify which transition mo-
ment/coupling finction parameters are free in the fit.
#46. IF(FITIT.GT.0) READ(5,%) (TMFVAR(m,ifs), m= 0, OTMF(ifs))
TMFVAR: aninteger for each of the OTMF + 1 parameters input on the preceeding line. TMFVAR(m, if
1 if parameter—m of state—ifs is to vary in the fit; otherwise set it =0.

For a transition moment or coupling function defined by an array of read-in points (TMFTYP =0), read
in the number of turning points NPTMF and parameters specifying how the interpolation over them and
extrapolation beyond them is to be performed. The definitions of these parameters are precisely the same
as those for the case of a pointwise initial-state potential (see reads #22 — 25), and are not repeated here.
#47. READ(5,*) NPTMF, TMFLIM
#48. READ(5,*) NUSETMF, ILRTMF, NCNTMF, CNNTMF
#49. READ(5,%*) RFACTMF, MFACTMF
#50. READ(5,%) (Xi(i), Yi(i), i=1, NPTMF)
End of the loop specifying the forms of the potential and transition moment functions for each of the NFS
final states.

End of channel-5 input data file.
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